

QUIZ (KINEMATICS-II)

time:60min max.marks:90

Section -A

1.	A particle moves along X – axis in such a way that its coordinate (x) varies with the time (t)
	according to the expression $x = 2 - 5t + 6t^2$ then

(A) its initial velocity is + 5m/s

- (B) acceleration is constant +12 m/s²
- (C) its velocity is zero at 3 sec

(D) none of these

Then displacement and distance covered by the particle in 2 seconds

(A) 2, 4 m

(B) 0, 2 m

(C) 2, 2 m

(D) 0, 0 m

- 3. A particle is thrown horizontally with velocity 5 m/s from the top of a cliff of height 20 m. The time taken by the particle to reach the ground will be $(g = 10 \text{ m/s}^2)$
 - (A) 4 sec

(B) 2 sec

(C) 3 sec

- (D) none of these
- 4. A man moves on a cycle with velocity of 4 km/hr the rain appears to fall to him vertically with a velocity of 3 km/hr.The actual velocity of rain is
 - (A) 6 km/hr

(B) 4/3 km/hr

(C) 3/4 km/hr

(D) 5 km/hr

5.	A ball is thrown upwards within a lift moving upwards with $a = 2 \text{ m/sec}^2$. The acceleration of bal just after release will be – taken ($q = 10 \text{ m/s}^2$)				
	(A) 2 m/sec ²	(B) 12 m/sec ²			
	(C) 8 m/sec ²	(D) 10 m/sec ²			

6. A river is flowing from west to east at a speed of 8 m per minute. A man on the south bank of the river, capable of swimming at 20 m/min with respect to water, wants to swim across the river in the shortest time. He should swim in a direction.

(C) 30° west of north

(D) 60° east of north

- 7. The height y and distance x along the horizontal for a body projected in the cer plane are given by $y = 8t 5t^2$ and x = 6t. The initial speed of projection is
 - (A) 8 m/s (B) 9 m/s (C)10 m/s (D) (10/3) m/s

(B) 30° east of north

- 8. A ball is projected with velocity v_0 at an angle θ with the ground.
 - (i) The time after which the velocity of the ball is perpendicular to its initial direction of motion is
 - $(A) \ \frac{v_0}{g cos \theta} \qquad \qquad (B) \ \frac{v_0}{g sin \theta}$

(A) due north

(C) $\frac{v_0}{g} \tan \theta$ (D) $\frac{v_0}{g} \cot \theta$

- 9. A point moves in a straight line so that its displacement x (in meter) at time t (in seconds) is given by $x^2 = t^2 + 1$. Its acceleration in ms⁻², at time t is
 - (a) $\frac{1}{x^3}$
- $(b)\frac{1}{x}-\frac{1}{x^2}$
- $(c)-\frac{t}{x^2}$
- $(d) \frac{t^2}{x^3}$
- 10. Which of the following graph correctly represents velocity-time relationship for a particle released from rest to fall freely under gravity?

(A)

(B)

(C)

(D)

- 11. For the v-t graph, distance travelled by body in 5 sec. is
 - (A) 20 m

(B) 40 m

(C) 80 m

(D) 100 m

- 12. A particle is projected with v_0 at angle of 30^0 with vertical. Its average velocity for its time of flight is
 - (A) $v_0 \sin 30$

(B) v₀ cos 30

(C) v₀ tan 30

(D) none of the above

(B) $\frac{v_0^2 \cos^2 \theta}{g}$ (D) $\frac{v_0^2}{g \cos \theta}$

(C) $\frac{v_0^2}{g sin \theta}$

- 14. A particle moves on a circular track of radius 5m with a uniform speed 5 m/s. What is the magnitude of average acceleration of the particle over the time interval in which it completes one revolution?

- (A) $\frac{10}{2\pi}$ m/s² (B) $\frac{5}{2\pi}$ m/s² (C) $\frac{1}{2m}$ m/s²
- (D) zero

Section - B

Comprehension - I

(Q.no 15 to 17 carries 4 M each)

In the shown projectile,

Average velocity for displacement OQ equals 15.

- (A) $v_0 \cos \theta_0 \hat{i}$
- (B) $\frac{v_0 \cos \theta_0}{2}$
- (C) $\frac{v_0 \sin \theta_0}{2}$
- (D) zero

- 16. The tangential component of acceleration at Q equals
 - (A) g sin θ_0
- (B) g cos θ_0
- (C) g sin θ_0
- (D) g cos θ_0

- Normal acceleration at P equals 17.
 - (A) g sin θ_0
- (B) g

- (C) -g
- (D) g cos θ_0

Comprehension – II

(Q.no 18 to 21 carries 4 M each)

	W = width of	of boat w.r.t. river flow,		-A	V _b ·
18.	If $V_r = 2V_{br}$, for (A) zero	minimum drift θ equals (B) π	(C) 120 ⁰	(D) 30 ⁰	
19.	If $V_{br} = 2V_r$, mir (A) zero	nimum drift would be (B) 2W	(C) W/2	(D) none of these	
20.	If time taken by the boat to cross the rivers is to be the minimum, θ equals (A) 90° (B) 60° (C) 45° (D) 30°		30 ⁰		
21.	If time taken by (A) 30°	the boat to cross the riv	ver is to be doubl (C) 90°		equals none of these

Section-C

Questions 22 to 23 are MCQ. Reason(R) Assertion (A) type Each question carries (+4,-1)

- 22. (A) Path of body moving under gravity is a parabola or a straight line depending on the velocity of projection.
 - (R) Gravitational force on the body is always towards the earth.
 - a) A and R are correct, while R is not the reason of A.
 - b) A and R are correct, while R is the reason of A.
 - c) A and R are incorrect.
 - d) A is incorrect, while R is correct.
- 23. (A) The displacements of a freely falling body in successive seconds after starting from rest are in the ratio 1:3:5.
 - (R) Because it is moving with uniform velocity.
 - a) A and R are correct, while R is not the reason of A.
 - b) A and R are correct, while R is the reason of A.
 - c) A is correct and R is incorrect.
 - d) A is incorrect, while R is correct.

Section-D

Questions 24 and 25 are matching type questions Each question carries (6 M)

24. Angle between velocity and acceleration vectors in the following cases

List-1	List-2	
A) For a Vertically projected body	e) 90°	
B) For a freely falling body	f) 60 ⁰	
C) For a projectile	g) zero	
D) In uniform circular motion	h) 180 ⁰	

25. Match list1 to list2 for a projectile

List-1	List-2
a) For two angles θ and (90- θ) with same Magnitude of velocity of projection	e) Pi.Pi/g
b) Equation of parabola of a projectile $y = Px-Qx^2$	f) Max. Height=25% of P ² /Q
c) Radius of curvature of a body projected Velocity (P i+ Q j) m/s at highest point	g) Range = Max. height
d) Angle of projection $\theta = \tan^{-1}(4)$	h) Range is same.